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Abstract
A theoretical study of the electronic and optical properties of laterally coupled quantum dots,
under applied magnetic fields perpendicular to the plane of the dots, is presented. The exciton
energy levels of such laterally coupled quantum-dot systems, together with the corresponding
wavefunctions and eigenvalues, are obtained in the effective-mass approximation by using an
extended variational approach in which the magnetoexciton states are simultaneously obtained.
One achieves the expected limits of one single quantum dot, when the distance between the dots
is zero, and of two uncoupled quantum dots, when the distance between the dots is large
enough. Moreover, present calculations—with appropriate structural dimensions of the two-dot
system—are shown to be in agreement with measurements in self-assembled laterally aligned
GaAs quantum-dot pairs and naturally/accidentally occurring coupled quantum dots in
GaAs/GaAlAs quantum wells.

1. Introduction

Semiconductor quantum dots (QDs) are man-made nanostruc-
tures in which the carriers, i.e. electrons and holes, are confined
in all spatial directions. In that respect, therefore, such QDs
are often referred to as ‘artificial atoms’ as they show typical
atomic properties like discrete energy levels and shell struc-
tures. One of the differences with respect to natural atoms,
however, is that, in such QD nanostructures, the number of
electrons and/or holes is tunable and the characteristic lengths
of the whole system, such as those corresponding to an external
confinement potential, electron–electron interaction and ap-
plied magnetic field, for instance, may be of comparable size.
Starting from QDs as a nanostructure, more developed and
complex systems are conceivable and likely to have prospects
in future device applications. A trivial example is the analogy
of a two-atom molecule with a semiconductor nanostructure
consisting of two coupled QDs.

Vertical and lateral quantum couplings in individual QD
molecules and its manipulation using applied magnetic/electric
fields have been demonstrated [1, 2]. Ortner et al [1]
studied the fine structure of excitons in InAs/GaAs QDs via
photoluminescence (PL) spectroscopy in magnetic fields up
to 8 T and observed anticrossings and mixings of optically

bright and dark states in InAs/GasAs vertically coupled QDs
as functions of the applied magnetic field. Krenner et al
[2] observed anticrossing of different excitonic transitions
in coupled GaInAs QDs as the applied electric field is
tuned. Moreover, by using near-field and time-resolved PL
measurements, Neogi et al [3] studied the exciton localization
in vertically and laterally coupled GaN/AlN QDs and observed
that, in multiple-period GaN QDs, the exciton binding energy
is six times larger as compared with the corresponding value
for a single-period QD, whereas the exciton lifetime in single
GaN QDs is a factor of about ten times the corresponding
lifetime in multiple QDs. For applications, however, one
would normally prefer choosing laterally coupled QDs as,
in principle, the lateral geometry enables coupling in two
dimensions and thus allows for a natural up-scaling to very
large numbers of quantum gates across a semiconductor
substrate. Furthermore, for individual lateral QD molecules
the realization of reliable gating between the constituent QDs
should be relatively straightforward when compared to the
vertically coupled case, where gating, although feasible, is
technically very demanding. Moreover, the lateral positioning
of QDs and QD molecules has already been demonstrated
by Schmidt et al [4] and Songmuang et al [5]. Also,
self-assembled laterally coupled (In, Ga)As QDs have been

0953-8984/09/405801+08$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/40/405801
http://stacks.iop.org/JPhysCM/21/405801


J. Phys.: Condens. Matter 21 (2009) 405801 Z Barticevic et al

Figure 1. Pictorial view of the double-quantum-dot model potential
used in the present work.

(This figure is in colour only in the electronic version)

observed by Beirne et al [6]. They demonstrated inter-dot
electron coupling using optical techniques, with the degree
of tunnel coupling controlled by applying a tunable static
electric field along the QD molecule axis, a fact which
may be used to create a wavelength-tunable single-photon
emitter. Moreover, the fabrication of strain-free, laterally
aligned GaAs–Ga0.73Al0.27As QD pair structures was recently
reported by Yamagiwa et al [7] by utilizing the droplet-
epitaxy technique and the anisotropic surface potentials of
the GaAs (100) surface for the migration of the Ga adatoms,
with their PL measurements indicating the existence of tunnel
coupling between the QDs. Kolb and Drew [8] performed
a study of coupling in naturally/accidentally occurring GaAs
QDs in GaAs/GaAlAs quantum wells. The QDs arise from
monolayer fluctuations at the well interfaces of narrow 2 nm
thick Ga0.7Al0.3As–GaAs–Ga0.7Al0.3As quantum wells which
lead to confinement in the growth plane. The possibility of the
occurrence of naturally coupled QDs was examined by near-
field scanning optical microscopy.

Motivated by the work by Yamagiwa et al [7] and Kolb
and Drew [8], in the present work we are concerned with a
theoretical study of confined magnetoexcitons in two laterally
coupled QDs, under applied magnetic fields perpendicular
to the plane of the dots. In order to describe the exciton
wavefunction, we have followed the same procedure described
in previous work [9, 10] in which the excitonic states have
been obtained via an expansion of the exciton envelope
wavefunctions in terms of products of hole and electron
quantum-well states with appropriate Gaussian functions for
the various excitonic states. The magnetoexcitonic transitions,
together with the corresponding exciton wavefunctions and
eigenvalues, are then obtained by using an extended variational
approach in the effective-mass approximation in which the
magnetoexciton states are simultaneously obtained.

This work is organized as follows. In section 2 we detail
the present theoretical approach. Section 3 is concerned with
the results and discussion and, finally, conclusions are given in
section 4.

2. Theoretical framework

Here we are concerned with e–h correlated transition energies
in two laterally coupled GaAs–Ga1−xAlx As QDs in the x–y
plane, and consider the model Hamiltonian

H = He + Hh + VQD + VC, (1)

where we take into account growth-direction-applied magnetic
field effects, i.e. the electron and hole Hamiltonian operators
are given as

He = − h̄2

2m∗
e

∂2

∂z2
e

+ 1

2m∗
e

[
−ih̄(∇e)‖ + e

c
−→
Ae

]2

, (2)

and

Hh = − h̄2

2m∗
h⊥

∂2

∂z2
h

+ 1

2m∗
h‖

[
−ih̄(∇h)‖ − e

c
−→
Ah

]2

, (3)

respectively, where m∗
e and m∗

h are the electron and hole
effective masses. We note that in the present study we have
considered a system of two coupled QDs in which the two
dots have the same radius. Experimentally it is very difficult
to reach such particular configurations. If the size of the two
QDs is very different, the properties of the system will be
dominated by the largest dot and an applied electric field would
be necessary in order to couple the two QDs. However, if the
sizes of the two QDs are similar, the system may be described
as consisting of two identical QDs. The VQD confinement
potential of the double QD heterostructure is modeled by

VQD = Ve(ze) + Vh(zh) + V (x, y), (4)

i.e., a quantum-well potential has been considered for
the confinement in the z direction, with Ve(ze) + Vh(zh)

corresponding to the sum of the electron and hole one-
dimensional L square-well barrier potentials, x and y are the e–
h in-plane coordinates, and the x–y in-plane V (x, y) potential
is taken as the superposition of parabolic potentials of each
dot (cf figure 1), with their minima at different positions and
truncated at the intersection plane in such a way that the
carriers are confined in two well-defined regions of the x–y
plane, named as QD regions, i.e.,

V (x, y) = 1
2μxω

2[(x − X0)
2 + y2]�(x)

+ 1
2μxω

2[(x + X0)
2 + y2]�(−x), (5)

where

μx = m∗
e m∗

h‖

m∗
e + m∗

h‖
(6)

is the heavy-hole exciton in-plane effective mass, �(x) is the
Heaviside step function and h̄ω is a measure of the strength of
the in-plane confinement potential of each dot. The coupling
or decoupling of the two dots is obtained by varying the 2X0
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distance for which two limiting cases are obtained: (1) for
2X0 = 0 the electron–hole (e–h) pair is confined in a single
QD and (2) for 2X0 → ∞ the e–h pair is confined in either of
two isolated QDs. It is convenient to define a lateral QD radius
as

RQD =
√

h̄

μx ω
. (7)

Alternatively, one may write V (x, y) in the above equation as

V (ρ, θ) = 1
2μxω

2ρ2 − μxω
2 X0|ρ cos(θ)| + 1

2μxω
2 X2

0, (8)

where ρ and θ are the e–h in-plane coordinates. The e–h
correlation is taken into account through

VC = − e2

ε
√

ρ2 + (ze − zh)2
, (9)

i.e. a Coulomb potential screened by the dielectric constants of
the barrier or well materials, where r = √

ρ2 + (ze − zh)2 is
the e–h distance. In the above equations, the vector potential
has been chosen in the symmetric gauge as

�A = B

2
(−y, x, 0). (10)

The z-dependent Vi(zi ) (i = e, h) confinement potential is
invariant under the transformation z → −z. Therefore, one
may assign a definite parity for the electron or hole quantum-
well wavefunction. As the e–h Coulomb interaction is invariant
under the simultaneous inversion of the electron and hole
positions, the excitonic envelope wavefunction will therefore
have a well-defined parity and the excitonic envelope function
may be expanded as a product of quantum-well electron and
hole eigenfunctions preserving the parity. As here we are
studying the effects of the lateral confinement due to the two
laterally coupled QDs, we work in the approximation in which
the center of mass of the e–h pair is frozen and, therefore,
the six-dimensional excitonic envelope wavefunction may be
written as a four-dimensional one as

�±
exc( �ρ, ze, zh) =

∑
P,P ′

∑
ne(P),nh(P ′)

Bne(P),nh(P ′),(±)( �ρ)

fne(P)(ze) fnh(P ′)(zh) 
P,P ′, (11)

where P and P ′ indicate even or odd parity, and 
P,P ′ = δP,P ′

for even (+) excitonic states whereas 
P,P ′ = 1 − δP,P ′ for
odd (−) states. In the above, fne (P)(ze) and fnh (P ′)(zh) are the
quantum-well electron and hole eigensolutions, respectively.
One, therefore, obtains the following eigenvalue equation
for Bne(P),nh(P),(+)(ρ, θ) (and a similar equation for the (−)
solution):[
− h̄2

2μx
∇2

ρ + eB

2c

(
1

m∗
e

− 1

m∗
h‖

)
Lz − ε(ne(P), nh(P))

+ U(ρ, θ)

]
Bne(P),nh(P),(+)(ρ, θ)

−
∑

P ′

∑
n′

e(P ′),n′
h(P ′)

V ne(P),nh(P)

n′
e(P ′),n′

h(P ′)(ρ)

× Bn′
e(P ′),n′

h(P ′),(+)(ρ, θ) = 0, (12)

where

U(ρ, θ) = V (ρ, θ) + 1
8μxω

2
cρ

2 = 1
2μxω

2
effρ

2

− μxω
2 X0|ρ cos(θ)| + 1

2μxω
2 X2

0, (13)

V ne(P),nh(P)

n′
e(P ′),n′

h(P ′)(ρ)

= 〈 fne(P)(ze) fnh(P)(zh)|VC| fn′
e(P ′)(ze) fn′

h(P ′)(zh)〉, (14)

ε(ne(P), nh(P)) = Eexc − Ee − Ehh − Eg, (15)

Eg is the bulk GaAs energy gap, Ee (Ehh) is the
first electron (heavy-hole) z direction quantum-well barrier
potential confinement energy, Eexc denotes the excitonic PL
peak energy (or correlated eh transition energy) and

ωeff =
√

ω2 + 1
4ω

2
c , (16)

with ωc = eB
μx c . We note that the U(ρ, θ) potential does

not have azimuthal symmetry and, therefore, the m quantum
numbers associated with the z component of the angular
momentum are not good quantum numbers for the present
problem. Moreover, the lateral potential in equation (8) is
invariant under the transformation θ → θ + π . Therefore,
Bne(P),nh(P ′),(+)(ρ, θ) should have definite parity (‘gerade’ g
or ‘ungerade’ u) under the interchange θ → θ + π . One may
then expand the Bne(P),nh(P ′),(+)(ρ, θ) functions in terms of the
eigenfunctions of the angular momentum Lz as

Bne(P),nh(P),(+),g(ρ, θ) =
∑

m=even

exp(imθ)F (+,m)

ne(P),nh(P)(ρ),

(17)
or

Bne(P),nh(P),(+),u(ρ, θ) =
∑

m=odd

exp(imθ)F (+,m)

ne(P),nh(P)(ρ).

(18)
One then obtains a set of coupled equations for

F (+,m)

ne(P),nh(P)(ρ), which may be solved numerically by
expanding F (+,m) in a set of Gaussian-type functions with
length parameters λ, chosen in order to cover the physical
range of relevant spatial parameters [9]. Further details of the
calculation procedure may be found elsewhere [9, 10].

3. Results and discussion

In the following, we have considered the e–h Coulomb
interaction as screened by the ε = 12.4 static dielectric
constant [11] of bulk GaAs throughout the heterostructure and
image-charge effects have been ignored. For the electron and
hole effective masses [11] we have used m∗

e/m0 = 0.0665,
m∗

hh⊥/m0 = 0.34 and m∗
hh‖/m0 = 0.116.

Figures 2 and 3 present results for the exciton energy
transitions in laterally coupled GaAs–Ga1−xAlx As double QDs
with dimensions such that R = 50 Å (or R = 150 Å)
for the radius of each dot and L = 20 Å for the quantum-
well confinement in the growth direction. Calculations are
performed without effects of the applied magnetic field. In the
case of the lowest e–h transition (see figures 2(a) and 3(a)),
the result for X0 = 0 corresponds to the m = 0 ground-
state e–h transition energy associated with an uncorrelated e–h
pair confined in a single QD. As the 2X0 inter-dot distance
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Figure 2. Non-correlated electron–heavy-hole (a) and corresponding exciton energy levels (b) for a laterally coupled GaAs–Ga0.7Al0.3As
double QD as a function of half of the distance between the centers of the two dots. The dimensions of the considered nanostructure are
R = 50 Å for the radius of each dot and L = 20 Å for the quantum-well confinement along the growth direction. Results in (c) are for the
exciton binding energy of the first two exciton states whereas in (d) the oscillator strength (light polarized in the x–y plane) is presented for the
first four exciton peak energies. Labels g and u in (b) correspond to the symmetry associated with the lateral confinement (cf equations (17)
and (18)). All depicted exciton energies in (b) correspond to states with even parity with respect to the z-confinement potential.

increases, one notices that the uncorrelated e–h transition
energy decreases up to a minimum and then increases up to
the value corresponding to two isolated QDs and one obtains
a doubly degenerate m = 0 ground-state uncorrelated e–h
transition energy, as expected. For X0 = 0, at the energy of
≈1.906 eV (cf figure 2(a)), one obtains a doubly degenerate
m = −1 and +1 transition energy, and as the 2X0 inter-
dot distance increases, one recovers, for X0 = 150 Å, a
fourfold essentially degenerate transition energy at ≈1.91 eV
associated with m = −1 and +1 uncorrelated e–h transitions
in two isolated QDs. A similar discussion would apply to
the calculated results shown in figure 3(a). With respect to
the excitonic energy transitions (or correlated e–h transitions),
calculated results may be interpreted as follows: for X0 = 0,
the exciton binding energy is ≈32 meV for the double-dot
structure with dot radii equal to 50 Å (see figure 2), whereas
it is ≈15 meV for dot radii equal to 150 Å (cf figure 3), i.e.
a larger binding energy for smaller QD radius, as one would
expect for the X0 = 0 isolated single QD regime. On the
other hand, the exciton binding energy is 7.2 meV for the
double-dot nanostructure with L = 20 Å, X0 = 150 Å and
R = 50 Å (cf figure 2), whereas the correlated e–h pair has a
binding energy of 6.5 meV for the coupled-dot structure with
L = 20 Å, X0 = 300 Å and R = 150 Å (cf figure 3). These
results for somewhat large values of the 2X0 dot distance as
compared to the dot radii indicate that, in both cases, effects

of the Coulomb e–h interaction lead essentially to an exciton
confined in a z direction L = 20 Å quantum well and a
large-radius two-dimensional QD (here we just mention that
the bulk GaAs exciton has a binding energy of ≈4 meV).
The exciton binding energies for the first two exciton states
are presented in figures 2(c) and 3(c). We note that, as the
distance between the centers of the dots increases, the exciton
binding energies decrease, as one would expect. Also note
that the degeneracies are removed. In bulk GaAs the exciton
binding energy for heavy-hole states is of the order of 4 meV
and the Bohr radius 100 Å. Note that, for example in figure 2,
the non-correlated electron and/or hole confined energies come
from similar competition between the radial confinement, due
to the parabolic potentials, and the confinement due to the
square quantum wells. In the case of figure 3, the in-plane
confinement is smaller than in the case of figure 2 as the radial
dimensions of the quantum dots are of the order of the Bohr
radius. We note that, for the 1s-like state in the 3D limit, the
expectation value of the electron–hole distance is 1.5 effective
Bohr radii, i.e. 150 Å. In the case of L = 20 Å, the energies for
the electron and heavy-hole carriers due to the square quantum-
well confinement are respectively 167 and 74 meV. For R =
50 Å, the energy associated with the in-plane confinement
changes from 72 meV for both the strong or low coupling
regimes to 69 meV in the intermediate coupling regime when
the system behaves like an elliptical QD. For R = 150 Å,
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Figure 3. Results are as in figure 2, with R = 150 Å for the radius of each dot in the coupled system.

this range of energies for the in-plane confinement goes from
8 meV to 7 meV. These results are in agreement with the zero
and infinite limits of X0 for the lowest e–h energy levels in
figures 2(a) and 3(a). The above results illustrate the order of
magnitude of the different confinements here considered. In
the X0 = 0 limit, the excitons are dark, except those with
m = 0. When X0 increases, the excitons with odd angular
moment remain dark because, in the present model, the lateral
confinement potential only mixes states with the same parity.
The variation of the oscillator strength (with light polarized in
the x–y plane) as a function of the distance between the two
coupled dots is shown in figures 2(d) and 3(d) for the first four
exciton peak energies.

We turn now to figure 4 which illustrates how one may
model the PL measurements reported by Yamagiwa et al
[7] in laterally aligned GaAs QD pairs. For a quantum-
well z confinement associated with L = 52 Å, an inter-dot
distance 2X0 = 450 Å and a QD radius of ≈ 100 Å, the
calculated result for the ground-state excitonic transition is in
good agreement with the first observed structure at 1623 meV
in the PL measurements (see figure 2(b) by Yamagiwa et al
[7]). However, for these structural dimensions the dots
are essentially uncoupled and the first-excited excitonic state
is at about the same energy as the ground-state one. By
considering the dot radii as 130 Å and X0 = 225 Å, the
two dots become coupled and the energies associated with
the two excitonic energy transitions are in agreement with the
experimental [7] PL features at 1623 and 1629 meV, provided
a z quantum-well L = 47 Å confinement is considered (see
calculated open dots in figure 4). In order to illustrate the

Figure 4. Exciton energy transition for a laterally coupled
GaAs–Ga0.73Al0.27As double quantum dot as a function of the radius
of each dot. Full curves are the theoretical calculations with
X0 = 225 Å and a L = 52 Å quantum-well confinement in order to
fit the lowest experimental data from Yamagiwa et al [7] (shown as
the dashed line at 1623 meV). Open symbols are theoretical findings
using R = 130 Å and a quantum-well width of 47 Å which fit the
experimental data by Yamagiwa et al [7] (dashed lines at 1623 and
1629 meV).

dependence of the exciton states on the structural dimensions
of the two-dot system, figure 5 displays the ground-state
and first few excited correlated e–h energy transitions as
functions of the distance (2X0) between the two QDs, the R
radius of each QD and the L quantum-well confinement of

5
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Figure 5. Exciton energy transitions for a laterally coupled
GaAs–Ga0.73Al0.27As double quantum dot, with a z-direction
quantum-well width of 47 Å, as a function of half of the distance
between the centers of the two dots (a) and of the radius of each
quantum dot (b). Results in (c) are as functions of the z-direction
quantum-well width used in the calculations.

the coupled pair of QDs. It is worthwhile mentioning that
the structural dimensions used here to fit the experimental
results, i.e. inter-dot distance 2X0 = 450 Å, QD diameter
of 260 Å and QD height corresponding to L ≈ 50 Å,
are in qualitative agreement with atomic force measurements
estimated by Yamagiwa et al [7] of 390 Å (±20 Å), 450 Å
(±30 Å) and 100 Å (±20 Å), respectively. In the same
way, one may attempt to guess the dimensions of a model
two-dot structure which would reproduce the 1729.31 and
1733.49 meV PL peak measurements in figure 3 of the report
by Kolb and Drew [8] in naturally occurring coupled GaAs
QDs in narrow GaAs–Ga0.7Al0.3As quantum wells, and one
finds that a coupled pair of QDs with structural dimensions
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R = 150 Å

R = 150 Å
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Figure 6. Results are as in figure 5 for a laterally coupled
GaAs–Ga0.7Al0.3As double quantum dot, with a z-direction
quantum-well width of 24 Å in cases (a) and (b), whereas (c) shows
calculations as functions of the z-direction quantum-well width.

corresponding to 2X0 = 600 Å, QD diameter of 300 Å and
QD height corresponding to a confinement in the z direction by
a L = 24 Å quantum well, would fit the observed [8] ground
state and first-excited excitonic states. Again, to illustrate the
dependence of the exciton states on the structural dimensions
of this model coupled QD system, figure 6 presents calculated
results for the exciton energy transitions in laterally coupled
GaAs–Ga0.7Al0.3As double QDs as functions of the separation
2X0 between the centers of the two dots, the radius of each dot
and the quantum-well width L associated with the z-direction
confinement.

Finally, we have considered the effects of an applied
magnetic field in the growth z direction of the laterally
coupled QD heterostructure, in the case of the two model QD
structures mentioned above, with dimensions such as to fit
the first two PL exciton peaks (at zero magnetic fields) in the
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Figure 7. Exciton energy transition for a laterally coupled
GaAs–Ga1−x Alx As double quantum dot as a function of the
in-growth-direction-applied magnetic field. Dimensions of the
double-dot structures have been taken (see text) such as to fit the first
two PL exciton peaks (at zero magnetic fields) in the experiments by
Yamagiwa et al [7] (a) and Kolb and Drew [8] (b).

experiments by Yamagiwa et al [7] and Kolb and Drew [8].
Calculated results for the exciton energy transitions in laterally
coupled GaAs–Ga1−xAlx As double QDs as functions of the
growth-direction-applied magnetic field are then presented in
figure 7. As expected, one notes that a growth-direction-
applied magnetic field leads to a blueshift of the correlated
e–h transitions. An applied magnetic field corresponds to
an additional confinement on the carriers, and one notes
(cf figure 7) that 15 T is enough to remove the effects
of geometrical confinement associated with the double QD
system. The linear behavior of the ground and first few
excited excitonic transitions, for magnetic fields larger than
15 T, is a clear signature of magnetic field (non-geometrical)
confinement effects.

4. Conclusions

Summing up, we have performed a thorough theoretical study
of the electronic and optical properties of laterally coupled
double QD heterostructures under applied magnetic fields
perpendicular to the plane of the dots. The excitonic states
were obtained by using an expansion of the exciton envelope
wavefunctions in terms of products of hole and electron

quantum-well states with appropriate Gaussian functions for
the various excitonic states, with calculations performed
by using an extended variational approach in the effective-
mass approximation. Calculations were shown to lead to
the appropriate limits of one single QD, when the distance
between the dots is zero, and of two uncoupled QDs, when
the distance between the dots is large enough. Recent
PL measurements in self-assembled laterally aligned GaAs
QD pairs by Yamagiwa et al [7] and naturally/accidentally
occurring coupled QDs in GaAs/GaAlAs quantum wells by
Kolb and Drew [8] were modeled by realistic coupled double-
dot structures, and the effects of growth-direction-applied
magnetic fields on the magnetoexciton energy transitions
were calculated for such systems. One should mention
that the present calculated magnetoexciton results may be
of importance when analyzing experimental measurements in
laterally coupled double-dot heterostructures under growth-
direction-applied magnetic fields.
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